
September/Oc tobe r 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
31

TestingTesting

QUICK LOOK

■ Common load testing errors
and consequences

■ Tips on determining the
workload, employing virtual
“super users,” and knowing
when to stop testing

The Top 13
Mistakes in

Load Testing
Applications

The Top 13
Mistakes in

Load Testing
Applications

by Mark D. Anderson

We are speaking, of
course, of load testing.

This article outlines thirteen com-
mon load testing mistakes that I have
encountered in my work with clients.
The focus of this article is Web applica-
tions—not Web sites that are just static
files and images, but sites that are user
interfaces to backend applications (such
as a stock trading or credit card autho-
rization system). We also do not discuss
“native” client/server systems, though
many of the same observations apply.

This list of mistakes is in no partic-
ular order (and is certainly not in order
of importance).

ONE

Confusing Load
Testing with

Something Else

Load testing is about verifying the per-
formance of a system under a simulated
multi-user workload.

Load testing is not functional
testing. In fact, those two are usually
far distant from each other in many di-

A lot more people talk about

it than actually do it. People

define it differently.

No amount of reading

can compare to
personal experience.

Size does matter.

mensions: the goals are different; the necessary skills are dif-
ferent; the test scripts are usually different (and far fewer, in
the case of load testing); the appropriate tool technologies
are usually different; and the appropriate stages in the prod-
uct life cycle are usually different.

Load testing is not about verifying single-user
performance. Obviously, end-to-end response time is
different when a system is used by just a single user than
when used by many—that is why load testing is necessary,
after all. But as shown in Figure 1, the slowdown per com-
ponent can vary considerably as the users are increased.
The slowest component in the single-user case may be
completely different from the component causing the
slowdown when there are multiple users. Furthermore,
single-user performance can be dominated by delays in
processing which occur on the client machine—those
might be of concern, but since there is a client machine
for every user, those client-side contributions are irrele-
vant in scalability.

Load testing is not primarily about finding multi-
user errors. When multiple users hit a server concurrent-
ly, there may be no performance problem, but the server
might do the wrong thing—for example, it might sell multi-
ple users the one remaining inventory item, or it might just
crash. Whether you want to do so or not, you’ll end up doing
some such testing in at least an ad hoc fashion as a side ef-
fect of the load testing. But to do “real,” full-scale, multi-user
testing typically requires an approach more akin to single-
user functional testing, including a way to reliably reproduce
race condition scenarios.

TWO

Confusing the Web
Server with

the Web Application

We started this article saying that we
want to test a Web application, not a
Web server. The Web server receives
http requests and quickly translates
those into other kinds of requests to
downstream applications. The amount
of time spent in the Web server itself
should be negligible: well under a mil-
lisecond per request. All the time is real-
ly taken up by the downstream applica-
tion(s) behind it.

You shouldn’t completely bypass
the Web server in your testing (in fact
most systems aren’t designed to have a
clean layer underneath that would
make that possible anyway). And you
do need to make sure the Web server
layer can handle the requisite number
of concurrent connections; this num-
ber is increased if the size of responses
is high, the clients have low-bandwidth
network connections, the client
browsers implement http “keep-alive”
but not “pipelining,” or the backend is
slow.

But in the end, you are testing the
application behind the curtain, not the
curtain. This means that while load test-
ing a Web application, you usually need-
n’t worry about such things as emulat-
ing http protocol variation, sending http
requests for static images or pages, or
doing anything else that is absorbed by
the Web server and not seen down-

stream. You still might want to test those
other aspects; just separate that exercise
from your application load testing. (Note
that you particularly want to verify the
Web server layer if it is running https,

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 1999
32

Generic Response Time Curve

Users feel
as if system
is dedicated

R
e
sp

o
n
se

 T
im

e
 E

a
c
h

 U
se

r
S

e
e
s

Number of Users

Components
which run on

the server

Components which
run on the client

Total Aggregate
Response Time

Users
perceive

slowdown

System
fails to

respond

(Curves are sum of values including everything underneath)

FIGURE 1 This figure shows an idealized plot of the response time of a system as
the number of users is increased. When there are only a small number of users, they
each feel as if they have dedicated use of the system. Beyond a certain level, the system
begins to slow down because of contention over some shared resource. Then, eventually
the system just breaks, and no response comes back at all. C
H

A
R

T
B

Y
A

N
N

IE
 B

IS
S

E
T

T

C
R

E
D

IT
C

R
E

D
IT

C
R

E
D

IT

September/Oc tobe r 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
33

C
H

A
R

T
B

Y
A

N
N

IE
 B

IS
S

E
T

T

since connection establishment is so expensive in that
case—and someone has probably done something dim
like configured the server to encrypt all the gifs along with
the text.)

You also shouldn’t get distracted by Web server
benchmarking tools such as MindCraft’s WebStone,
SPEC’s specWeb96, or ZDNet’s WebBench. These are for
testing Web servers, not testing Web applications. They
come with a supplied set of standardized static files to
put behind your Web server for testing purposes. Such a
load is suitable only for a static Web site—not for a typi-
cal “weblication,” in which there may be no static html
files on a disk at all, and all the html sent back is dynami-
cally generated by a backend server.

The load from a Web benchmark has nothing to do
with your application. It is possible to alter the URLs used
by the tool, in order to direct them toward your real appli-
cation (particularly with WebStone, since it is open source).
But there are other tools that were actually built for appli-
cation load testing, some of which are discussed later in
this article.

THREE

Starting
Late

Load testing can and should be done long before a system
has a stable or complete user interface. One reason that
people often schedule load testing as a final step in a test
or development plan is the confusion linking load testing
with functional testing. Your load testing tools are only re-
liant on there being a server which can handle http re-
quests for the most important workflows. There needn’t
be a nice browser user interface, or even the kind of inter-
face most Web sites have.

Perhaps another reason that people schedule load test-
ing to happen last is that conventional wisdom says that
one should get an application working first, and then do
performance tuning. That advice is du-
bious even when building single-user
applications, but it is likely to result in a
disaster if applied to developing a multi-
user application. Often the problems
discovered by load testing can reveal
deep architectural problems, which
might be addressed if discovered early
enough.

Of course, you also want to per-
form a load test as a final pre-launch
qualification, for either an initial release
or any major new revision.

You’ll also want to do some load
tests for capacity planning purposes
(comparing different hardware deploy-
ment alternatives) mid-way through the
project.

As they say: Test early, test often.

FOUR

Thinking It Can Be
Done by One Person

Regardless of whether you should load test, it still might
not be possible for you. You and your organization might
lack:

■ The skills necessary—if the people saddled with load testing can’t pro-
gram, and can’t run an OS performance monitor, you’ve got a problem.

■ Developer involvement—when the system croaks, only the developer
responsible (or the database administrator, in the case of a database
server) will be able to debug it, let alone be able to fix it.

■ Organizational commitment to time, labor, and hardware—while load
testing tools don’t have to cost a lot, it still takes time and discipline to
perform a load test that will mean anything.

You’ll need to know who is responsible for every part
of the system that’s downstream from your load
driver. They’ll need to supply you with monitoring tools, or
they’ll have to be there in person while you are doing the
load test.

FIVE

Picking the Wrong Tool

The state of the art in load testing tools leaves much to be
desired. To choose among the tools available, it is neces-
sary to locate your load testing requirements along these
two dimensions:

■ Complexity: How many different user workflows should you test?
How many separate pages/steps are there in each workflow? (I use the
term “workflow” here to mean what others might mean by “scenario,”
“use case,” or “transaction.”)

Don’t bother
load testing

Low Complexity

Low
Traffic

High Complexity

High
Traffic

Use scripting

Use a
URL player

Abandon
hope

FIGURE 2 A tool selection strategy grid.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 1999
34

■ Traffic: What is the total rate of requests?

Your strategy in tool selection should be something like
what’s shown in Figure 2 (previous page).

High Complexity, Low Traffic
An example of this case would be an online purchasing sys-
tem—the request rate is not that high (you probably won’t
be getting a purchase every second!), yet the workflow is
rather complex (checking credit card authorization, etc.).

If you are in this quadrant, then you can perform your
load testing by scripting. First, hand-write your workflows
in your favorite scripting language, presumably Python or
Perl. Those languages both come with powerful libraries
that can emulate anything that a browser can do (that is
why they are popular for writing Web spidering and link-
checking utilities). They can take care of all the various
technical issues in browser emulation, such as frames,
cookies, http redirects, and so on.

It is probably worthwhile to clarify that these scripts
are not driving a browser. The Perl (or Python, or whatev-
er) libraries are http clients themselves (often called “user
agents”). It makes no difference to the server what is send-
ing it http requests; and using an http library is considerably
simpler, more efficient, and more robust than sending
mouse and keyboard clicks to a browser. The application
may have JavaScript behaviors and other client-side im-
pedimenta, which should undergo some functional testing,
but as long as the server doesn’t see them, they have no
role in load testing.

After your scripts are written, the next step is to hook
them up to a parallel-testing engine such as:

■ http://stein.cshl.org/~lstein/torture

■ http://perl.apache.org/guide/performance.html#Tuning_
with_crashme_script

■ http://web.stonehenge.com/merlyn/WebTechniques/col28.html

(Note: The tools above all use Perl. They also all hap-
pen to rely on Unix-specific features not yet available in
perl-win32. That will likely change soon…perhaps by the
time you read this.)

Using this scripting approach to load testing means
that you will incur the overhead of a script interpreter in
your load generator, which means that it won’t scale to very
high loads. However, you can get to high tens of requests
per second with this approach from even a good laptop.

Note that if your Web application, in part, uses non-http
protocols such as Java RMI or ActiveX data-bound con-
trols, scripting is still a viable solution. In fact, you could
even still use Perl or Python, both of which can exercise
Java objects or (on win32) invoke ActiveX objects. Or you
could use the Windows Scripting Host, depending on your reli-
gious affiliation.

Low Complexity, High Traffic
An example of the “low complexity, high traffic” case would
be a search engine—the request rate might be quite high,

but there is little workflow to speak of (at most, some users
might request a second page of results). Another example
would be an ad server.

If you are in this quadrant, then you can use one of the
“URL player” tools listed here. These tools are not capable
of expressing complex workflows, but because they don’t
incur an interpreter overhead, they can generate far more
load from the same computer resources than those that do.

Some example tools in the “URL player” category are:

■ ApacheBench, in the apache distribution as “bin/ab” or at
http://webperf.zeus.co.uk/intro.html

■ Acme Software http_load, at http://www.acme.com/software/
http_load

■ HP Labs httperf, at ftp://ftp.hpl.hp.com/pub/httperf

■ Binary Evolution VeloMeter, at http://www.binaryevolution.com/
velometer/velometer.vet

■ Microsoft WCAT, at
http://msdn.microsoft.com/
workshop/server/toolbox/wcat.asp

These tools each have their pros and cons (which these
margins are too small to hold), but they are all free and
downloadable, so you can figure that out yourself. And all
but Microsoft’s provide source code, so you can fix any-
thing you don’t like.

High Complexity, High Traffic
If your application is both high in complexity and high in
traffic, then you are in trouble.

Of course, you can probably get some useful results by
first doing some testing in the other quadrants, using a mix-
ture of tools. Also, it is possible to perform testing in this
quadrant, but it will cost you: you’ll probably have to hire a
consultant, and/or do some custom C programming, and/or
buy a bunch of load generator machines.

SIX

Focusing on Script
Writing Instead

of Fault Isolation

Another inappropriate carry-over from functional testing is
a fixation on the act of script writing. Writing the test
scripts is the easy part, once you’ve gotten the hang of it.
The hard part is finding the cause and repairing it when the
system starts coughing up blood.

For example, I crashed the user registration system on
this magazine’s sister site, STQE.net, using a single
ApacheBench command line. This was sufficient to cause the
site to spew the following error message:

Microsoft OLE DB Provider for ODBC Drivers error ‘80040e4d’

September/Oc tobe r 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
35

C
H

A
R

T
B

Y
A

N
N

IE
 B

IS
S

E
T

T

[Microsoft][ODBC SQL Server Driver][SQL Server]Unable to con-
nect.

The maximum number of ‘240’ configured user connections are
already connected.

System Admin is t rator can conf igure to a h igher va lue wi th
sp_configure./memberprofile.asp, line183

Fifteen minutes was spent writing and executing the
load test. How long would it take to repair the resulting
crash? It can take hours, even days, just to find out what is
wrong with complex systems, let alone fix the problems.

Monitoring
Because you’ll be spending most of your time in analysis, it is
every bit as important to invest in setting up and understand-
ing system monitors as it is to work on tests. You’ll need lots
of monitors running while you run the test:

■ OS-level monitors on your load driver,
to make sure it isn’t bottlenecking

■ OS-level monitors on your server

■ Custom component-specific monitors that the developers write

■ Monitors provided with third-party server components, such as data-
base server
monitors

And of course, the load driver itself will be checking

for errors coming back from the server. Note that your op-
erations group should have some basic monitors available,
since—after all—they will be monitoring the server when it
goes live…right?

For OS-level monitoring on NT, perfmon is excellent.
On Solaris, Sun supplies the “SE Toolkit” (which is also now
commercialized as Symon). Linux lags a bit, but xosview
and KTop provide some help. And of course, all Unixes
have a variety of command line tools like vmstat and net-
stat for monitoring particular aspects of the OS.

The Problem Could Be Anywhere
The bottleneck could be at any layer in your system. For ex-
ample, in the hypothetical system shown in Figure 3 (previ-
ous page), a bottleneck might be found at:

The Web Server It might refuse connections beyond a
certain level of concurrency, because someone forgot to ap-
ply the appropriate OS patches or kernel configurations.

The Application Server It might crash because it isn’t
thread safe, or might produce erroneous results because it
doesn’t generate differently-named temp files for concur-
rent users, and so on.

The Database Server It might slow way down when you
mix in some writes with your reads, because of lock resolu-
tion or some other problem.

Note that none of the above examples would be found
in single-user testing. Note also that the solution to a prob-
lem is not always located where the problem is found. The
database might be the bottleneck, but after a certain point

Web
Server

Finding the Culprit

Application
Server

Database
Server

Kernel might
refuse more
connections

Might be making
needless DNS calls
to find app server

http
Requests

Might be wasting
time calling stat ()

Might have a
leak causing
swapping

Might have too
small a buffer
cache

Might be locking
out reads during
some writes

FIGURE 3 Faults and bottlenecks can occur at several points in a system.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 1999
36

U S E R C L A S S U S E R L I K E L I H O O D W O R K F L O W R AT E R E S P O N S E T I M E G O A L

Guest 10% Signup 1/hour 5sec

Newbie 70% Simplequery 10/hour 2sec

Checkout 1/hour 10sec

Poweruser 20% Complexquery 30/hour 5sec

Checkout 0.1/hour 10sec

TABLE 1

W O R K F L O W R AT E

Signup 10k * 10% * 1/hour = 1k/hour ~ 0.3/sec

Simplequery 10k * 70% * 10/hour = 70k/hour ~ 20/sec

Complexquery 10k * 20% * 30/hour = 60k/hour ~ 20/sec

Checkout 10k * 70% * 1/hour + 10k * 20% * 0.1/hour = 7200/hour ~ 2/sec

TABLE 2

you just can’t tune a database anymore, and someone will
have to think about other solutions: changing the SQL that
the application sends to the database, for example, or
caching the results.

SEVEN

Being Disorganized

As tempting as it is, the right approach to load testing is to
not just pick some random workload, fire it off, and see
what happens. Okay, I know you won’t be able to control
yourself, so you can do that once, but then you have to
buckle down and get organized:

Be clear on your goal. Are you qualifying different
hardware configurations (for capacity planning or vendor
comparison), or are you testing the software? Are you try-
ing to determine how much a load the system can take, or
how fast it will be at a pre-determined request rate? Are you
checking whether the server can stay up for two days under
a constant load, or testing whether it can recover from a
sudden burst above its nominal capacity? You might have
more than one of these goals, but keep them clear in your
mind, and don’t confound them in any one testing exercise.

Start small. At first, do just one workflow type, at a low
rate. Make sure that works. If you don’t do this at first,
you’ll just end up doing it later when your big test fails;
you’ll have to backtrack with smaller, narrower tests in or-
der to debug why it failed.

Keep records. At the time, you think you’ll remember
the configuration of the system and how you tested it and
what the results were, but in fact you will have forgotten by
the next day.

EIGHT

Thinking of Workload in
Terms of Hits and Users

People like to talk about “hits” and “users” in Web sites.
That is because those quantities can be monetized. That
doesn’t mean they are terribly informative in defining load.

What does it mean to have a “million users”? Does that
mean that one million users log in simultaneously at 9:00
each morning? Are those new users or repeat users? What
are they doing once they get to the system?

What does it mean to have a “million hits a day”? How
many of those hits are just images or static files?

If you had to do capacity planning for a highway sys-
tem, would you just ask how many legal drivers exist in the
area? No, of course not. You’d also want to know how often
they drive, where they go, and how fast a driver they are.

An analogous case holds for Web sites. You like to
know the absolute number of unique active users the sys-
tem has to know about, the number and length of user ses-
sions (like a driver’s commute), and the number of each
kind of workflow they carry out in those sessions.

This is put in a workload definition. Table 1 shows a
simplified example.

For simplicity, we just assume that every user has a
one-hour session. The “User Likelihood” is the likelihood
that a user who is using the system at any point in time is
of that class—it is not a proportion of all the users who
have ever used the system (i.e., it reflects the activity lev-
el of users). Note that this table approximates the load
with a small number of what we are calling “workflows”
(see more about workflows in the “About Tools” sidebar
later in this article).

Now suppose that we have decided that our system will
have to support 10,000 simultaneous user sessions (again,
we are interested in sessions, not static users). From that,
we can calculate the aggregate request rate for each work-

September/Oc tobe r 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
37

flow (see Table 2). Note that we use just single-digit preci-
sion in the results—there is no point in greater accuracy,
given how much approximation there is.

The Superhuman Virtual User
It would seem awfully wasteful to emulate those 10k user
sessions by starting up 10k processes (or even 10k
threads); each of those processes/ threads would then
spend most of its time sleeping (just like a real human).
Why not just emulate all those users and sessions with a
smaller number of users and sessions, which are superhu-
manly fast? In that way, the server will get the same number
of aggregate requests, just from fewer connections.

Depending on the level of load you want to produce,
you may have to take this approach—and depending on the
architecture of your system, it might make no difference.
But there are two potential problems with it:

1. Unrealistic reflection of per-session server resource consump-
tion. In many applications, there are server-side resources that are
consumed per each live session. Thus, there can be a big difference
between a thousand sessions going at human speed, and ten sessions
going at one hundred times human speed.

2. Unrealistically low concurrency. While you might be producing the
desired aggregate request rate with this approach, your virtual super-
human users are always waiting for their previous request to complete
before sending the next one. This is unrealistic; your eventual real 10k
users certainly won’t be coordinating with each other to ensure that
each does not send another request before the previous one finishes.
Bob in Chicago won’t wait for Mary in Seattle to see her Web page fin-
ish loading before he clicks on a link.

There are some load test tools (such as the “URL play-

er” http_load) which do not present this dilemma; they can
generate actual connections for all those thousands of sepa-
rate users. But then you sacrifice the ability to emulate
some complex workflows. This is an example of the kind of
trade-off necessary in the complexity-traffic matrix shown
earlier.

One solution to the problem is to take a composite ap-
proach: use one technology to test the ability of the server
to handle many concurrent sessions (which don’t do
much), and use another technology which can emulate
complex workflows but takes the superhuman-virtual-user
approach (in order to be at all scalable).

Determining the Workload
So how do you get this workload information? The tradi-
tional QA approach would be to demand a Marketing Re-
quirements Document, and refuse to do any work until one
is produced. Of course no reader of this magazine would
ever do something so futile as that.

Another approach is to just guess. At least then you are
clear about your assumptions, and sometimes it’s all you
can do. Furthermore, it’ll be pretty easy for you to change
the numbers anyway once you get your system set up.

Often you can get actual data: this is because your
company has, of course, already launched this application
(why wait for testing?), or has launched a previous version
that is similar to this one. So you can mine the Web server
logs to determine usage statistics.

There are lots of Web log analysis programs avail-
able, many of them free (e.g., analog and Webalizer). What
you need to do is identify some telltale URLs that are sig-
natures for different workflows, and then find out how of-
ten each is requested each day. You’ll probably want to
know the total request rate, as well as how many different

users contributed to that request rate.
As a sanity check, you’ll also want to
scan for users who didn’t use any of
your telltale URLs.

NINE

Cold Starts

The diners at a restaurant don’t all ar-
rive at exactly 6:00 p.m. Similarly,
Web sites don’t go from receiving
zero traffic to very high traffic instan-
taneously. Yet load testing tools are
quite capable of emulating this unre-
alistic circumstance, so it is easy to
get sucked into analyzing problems
that don’t matter.

Most systems will perform poorly
or even fail under such a blitzkrieg at-
tack. Operating systems take time to
swap in previously unused text or data
pages. Caches take time to build up.
Web servers take time to increase the
number of running threads or processes

Some Real-World Examples

Here are two real-world examples of problems that might be discovered.

1. I was working with a client to test an Internet application whose throughput
goal for a particular kind of request was 50/sec. On our first load test, we hit
80/sec. We were ecstatic. Then the server locked up completely after a minute of
load. We discovered after a few hours of debugging (it was a complex system) that
there was a leak in a module linked into the Apache Web server. The Apache
children (the forked httpd processes maintained to handle requests) would grow
until all virtual memory was consumed. Then the system would panic.
2. With that same client and application, I decided to also mix in another request
type, which performed a write operation. I hesitated over whether I should even
bother, because the throughput requirement for that operation was just 1/sec. But
it was a good thing I did, because the first time we loaded the system with both re-
quests at their goal throughputs, the response time was unacceptable. Our data-
base administrator discovered that we had been over-aggressive with our bitmap
indexes—these were great for read performance when only reads occurred, but
the extra indexes destroyed write performance, and there was a derivative effect
on the read performance. So we took those indexes out.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 1999
38

to accommodate load level. But none of that matters in the
real world, because you aren’t going to be resetting your
whole system on a regular basis—just every once in a
while, on off hours, when there is plenty of time to spin up.

What matters most is the ability of your system to han-
dle “steady state” load. One way to approach this is to run
one mild load test, and don’t even bother with the results.
Then start the “real” load test. Even with that approach, there
will probably be some warm-up necessary, so you’ll want to
run the test for a while (a few minutes minimum) to wash out
the outliers in your measured response times.

TEN

IgnoringErrors

When you get errors, stop testing until they are fixed.
No response time measurements are relevant if you are

getting errors. (How much work is required of the server
to return an error?)

This principle is different from functional testing,
where it is often worthwhile to continue performing oth-
er tests after you find your first bug.

ELEVEN

Bottlenecking
the Load Driver

Perhaps the single most common mistake in load testing
(besides not noticing that the server is returning errors) is
bottlenecking at the load driver. You might get a false
sense of confidence in your system’s ability to handle load
because you aren’t generating the load you think you are.

There are many ways driver bottlenecking might occur:

Disk Spending time writing the load testing re-
sults to a log file, rather than sending the next re-
quest out.

CPU Spending time running a script language
interpreter, rather than sending the next request
out.

RAM Spending time swapping virtual memory,
rather than sending the next request out (not all
your virtual users can fit in RAM).

Network Bandwidth If your average re-
quest rate times your average request-response
size exceeds the bandwidth between your driver
and your server, you will bottleneck at the net-
work.

Sockets Your OS had better allow for you to
open as many TCP/IP sockets as you need.

How powerful must the hardware be
for your driver? To a certain extent you’ll
have to figure that out as you go—in
some sense, you are really load testing
both your driver and your server. Rela-
tive to the hardware you have for your
server, the driver hardware can be more
puny if the server has to do a lot of work
for every request. If the requests are
“easy,” then the driver may have to be
practically as powerful as the server. In
fact, often a ready source for the driver
hardware is the hot spare machine that
your operations group has thoughtfully
purchased to use when the server has a
hardware failure. (Right?) Using identical
hardware for the driver and server also
has the benefit of allowing you to use the
same OS monitoring tools on both hosts.

Because of all the different things
that might slow down the load driver, it

AUTHOR SOAPBOX.

About Tools

There are many load testing tools available, both free and commercial. A good
list may be found at http://www.charm.net/~dmg/

qatest/qatweb1.html (see Webinfolink icon at the end of this article).
Most of these tools have their origin in Web server benchmarking or in GUI

functional testing, two ill trees whose shadows have stunted the growth of appli-
cation load testing as a technology in its own right.

Most of the available commercial load testing tools are retreads of GUI func-
tional test tool technology. Having failed to achieve any great successes in their
original market, those vendors have moved on to fresh territory.

Load testing requires the use of a small number of test scripts—say, five or
so. While there are far more functional tests that must be performed on the sys-
tem, load testing consists of cutting it down to the basic small set of user work-
flows that are representative of the load. To load test a restaurant, would you order
everything on the menu? Of course not. You don’t need to include Peking Duck in
your load test—just Kung Pao Chicken and a few other popular dishes. In the same
way, it is not necessary to include all system functionality when load testing a
server.

Because only a few scripts are used, there are no significant savings in shar-
ing the supposedly valuable “test assets” from functional testing, even if those
scripts matched user workflows—which they usually don’t. Nor are test genera-
tion features a huge benefit, as long as script editing is still necessary in the end
(and it is, regardless of what vendors say). And the requirement of having full-
fledged GUI test and scripting technology makes for poor scalability in test driver
hardware. ApacheBench and http_load can produce at least an order of
magnitude greater request throughput than one of these tools, on the same driver
hardware.

I’m not suggesting the free tools because they are free; I’m suggesting them
because I believe the current crop of commercial tools brings a set of features that
are a distracting load of their own.

September/Oc tobe r 1999 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
39

is important to have a load testing tool that can be config-
ured to achieve a set constant rate of requests (or at least
to raise an alarm when the rate drops below a certain lev-
el). The alternative model of “send requests as fast as you
can” or “send requests as fast as N superhuman virtual
users can” results in load test results that are not repro-
ducible—they are vulnerable to the vagaries of the re-
sources available on your load testing driver.

TWELVE

Not Reproducing
the Production

Environment

To do things right, you need to have a dedicated test lab for
load testing. It needs to have an isolated network. It has to
have hardware that is as close to your production hardware
as possible. There can’t be other users on the system. If you
put system components on separate hosts in production,
you need to do that in your test lab as well (this wouldn’t
matter for functional testing).

Presumably your application has some sort of database
(or at least a file system). It is important for you to get this
database to be populated with a realistic amount of synthet-
ic data (or better, real data copied from your previous pro-
duction database). This is because performance of a server
can be drastically affected by database size. The four-way
SQL join that some engineer thought was so clever might
run quite fast on a small database, but may never even com-
plete on a realistically-sized database.

Naturally enough, you also need to vary the data used
by your virtual users. While you don’t need a large number
of test scripts in load testing, you do need to parameterize
the running scripts with a wide variety of data. Because of
caching, it isn’t much of a challenge to a server if it can sat-
isfy all the requests it receives with the same row in a data-
base table every time.

Note that even in the ideal case, your test lab is not go-
ing to have the same physical networking combinations as
your live system: (a) your test lab is probably in your inter-
nal corporate network, while your production system is
probably networked through your co-located ISP connec-
tion, and (b) you’ve got one fat pipe between your load
driver and your server—as opposed to a fat pipe between
your server and your Internet firewall/router, which is con-
nected to the Internet “cloud” (upstream providers, peering
connections, and so on).

If you need to emulate a large number of low-band-
width connections (which will therefore hold onto the
TCP/IP connections for a while), then consider using
http_load, which supports such emulated bandwidth throt-
tling.

There are alternatives to automatic load testing, such
as a limited production release (i.e., only publishing a URL
to a select set of users). You might want to do that anyway,
as it has the added benefit of getting you some usability
feedback. With a limited release, you can also sniff out
problems specific to your production setup. For example,
your operations team might have not ever noticed that they
have 20% packet loss on their 1.5mbs T1 line to the Inter-
net. You’d never see that problem on your internal test lab,
probably running on a 100mbs LAN.

THIRTEEN

Not Knowing
When to Stop

There will always be some bottleneck in the system. But
you only have to be able to identify them until the perfor-
mance is acceptable.

It is tempting to keep tweaking the system after that
point, to make it far surpass your performance goals. But
keep in mind that you’ve got other testing to do too. There

is far more to making a Web site or Web
application a success than load testing.
A fast site can still be unacceptable. You
are much better off freezing a known
good configuration of the system, and
spending your testing and engineering
resources on other things. STQE

Mark D. Anderson is the founder
of Discerning Software (www.
discerning.com), a consulting
firm specializing in Internet applica-
tion architecture whose clients have
included Lycos, SkyMall, and NetOb-
jects. He is a co-founder
of Rec.Net, and is on the technical ad-
visory board of several other
Internet startups. Mark holds three
patents, and has graduate degrees
from MIT and from Berkeley.
You can email him at
mda@discerning.com.

Why Your Web Site May Still Suck

Load testing won’t prevent you from producing a Web site that sucks. And rest
assured, it might—everyone else’s does. You’re probably using html frames,

aren’t you? And your marketing department has mined your site with a bunch of
pdf files, and your designer gave you an “entrance tunnel” for a home page, and
half of the links don’t work, and most of the html isn’t actually valid, and your
JavaScript raises errors on half your users’ browsers, and your Java applets lock
up the other half of the browsers, and no user can figure out how to navigate, and
you choke the user with 100KB of images on every page, and the contact informa-
tion is incorrect (or correct but no one will respond), and your site map is inaccu-
rate, and your search form will crash on any search phrase with punctuation in it,
and most of the content is out-of-date, ungrammatical, and misspelled.

The only thing keeping you out of http://www.webpagesthat-
suck.com is that your operations staff can’t keep your Internet connection
and your server up at the same time, thus saving your company the embarrass-
ment of actually exposing users to this horror.

